3D printed teaching aids

I bought a Creality Ender 3D printer in 2020 (going at about $270 at Lazada now), at the height of the pandemic and have been using it to print physics-related teaching aids for a while, including balloon hovercrafts, catapults, a Pythagorean cup, tippy top and a vertical axis wind turbine. In addition to complete demonstration sets, it is also handy for printing parts to fix old demonstration sets such as a base for a standing cylinder with spouts at different heights.

The Creality Ender 3 3D printer

This is a video compiled with the objects that I printed in recent months. The lime green filament that I used were purchased at $16.40 for 1 kg from Shopee. Therefore, each of the prints shown in the picture cost between forty cents to four dollars’ worth of filament.

The first is a coin funnel that can be used to demonstrate how centripetal force keeps objects moving in circles. As the energy of the coins decreases due to friction, the radius of the circle gets smaller and its speed actually increases. This forms a cognitive dissonance that often surfaces when we discuss satellites losing altitude in orbit.

The second is a tensegrity structure which can be used to teach about moments and equilibrium.

The third is a marble run set that was really just lots of fun to watch rather than teaching any difficult concept other than energy changes.

The fourth is a series of optical illusions that can be used to promote thinking about how light from reflections travel.

The final print is a cup holder that can be swung in vertical loops with a cup full of water. This is the most popular print among my colleagues and will certainly be used in term 3 for the JC1 lessons on circular motion.

Equation of Motion App

Access the app in full screen here:

This app is designed to give students practice in interpreting velocity-time graphs with various scenarios, such as more complex examples involving negative velocity and acceleration. Answers will be given if student is wrong.

Use this to embed into SLS or another LMS.

<iframe scrolling="no" title="Equations of Motion" src="" width="700px" height="480px" style="border:0px;"> </iframe>

Root-mean-square Currents

The concept of root-mean-square values for Alternating Currents is challenging if students are to relate the I-t graph with the Irms value directly.

They have to be brought through the 3 steps before arriving at the Irms value. This interactive applet allows them to go through step by step and compare several graphs at one time to see the relationship.

Through the interaction, students might be asked to observe that the Irms value is never higher than the peak Io.

For a complete sinusoidal current:

For a diode-rectified current:

In comparing the Irms of both currents, students can be asked to consider why the ratio of the values is not 2:1 or any other value, from energy considerations.

Worked on this earlier as I am the lead lecturer for this JC2 topic and am trying to integrate useful elements of blended learning. Do let me know in the comments if you have ideas or feedback that you would like to share.