IP3 02 Kinematics

Multiple Representation of Vertical Throw

One common misconception among new learners of kinematics is that acceleration of an object being thrown upward is zero at the top of the path when it is momentarily at rest. I created this interactive, along with the 3 graphs in order to help students relate the vectors to the graphical representation of motion.

It is also worth noting that students often have conflicting ideas of the acceleration at the beginning of the throw, as they are aware that a resultant upward acceleration is necessary for the object to start moving upward in the first place. Hence, it must be stressed that the animation begins after the ball has left the throwing hand.

For a view that is optimized for your screen, visit https://www.geogebra.org/m/zvsydy9f.

Relationship between displacement-time and velocity-time graphs

Through this GeoGebra app, students can observe how the gradient of the displacement-time graph gives the instantaneous velocity and how the area under the velocity-time graph gives the change in displacement.

In the GeoGebra app below, you will see a displacement-time graph on the left and its corresponding velocity-time graph on the right. These graphs will be referring to the same motion occuring in a straight line. Instructions

  1. Click “Play” and observe the values of displacement and velocity change in each graph over time.
  2. Note the relationship between the gradient in the displacement-time graph and the value of velocity.
  3. Note the relationship between the area under the velocity-time graph and the value of displacement.