Appreciating the least square method of determining best-fit line

This interactive is designed to help students understand the statistical approach underpinning the drawing of a best-fit line for practical work. For context, our national exams have a practical component where students will need to plot their data, often following a linear trend, on graph paper and to draw a best-fit line to determine the gradient and y-intercept.

The instructions to students on how to draw the best-fit line is often procedural without helping students understand the principles behind it. For instance, students are often told to minimise and balance the separation of plots from the best-fit line. However, if there are one or two points that are further from the rest from the best-fit line (but not quite anomalous points that need to be disregarded), students would often neglect that point in an attempt to bring the best fit line as close to the remaining points as possible. This results in a drastic increase in the variance as the differences are squared in order to calculate the “the smallest sum of squares of errors”.

This applet allows students to visualise the changes in the squares, along with the numerical representation of the sum of squares in order to practise “drawing” the best-fit line using a pair of movable dots. A check on how well they have “drawn” the line can be through a comparison with the actual one.

Students can also rearrange the 6 data points to fit any distribution that they have seen before, or teachers can copy and modify the applet in order to provide multiple examples of distribution of points.

Docking with Tides

Did this simple interactive upon request by a colleague who is teaching the JC1 topic of Oscillations.

Based on the following question, this is used as a quick visual to demonstrate why there must be a minimum depth before the boat approaches harbour.

The rise and fall of water in a harbour is simple harmonic. The depth varies between 1.0 m at low tide and 3.0 m at high tide. The time between successive low tides is 12 hours. A boat, which requires a minimum depth of water of 1.5 m, approaches the harbour at low tide. How long will the boat have to wait before entering?

The equation of the depth of water H based on the amplitude of the tide a can be given by $H = H_o + a \cos \omega t$ where $H_o$ is the average depth of the water.

$H = H_o + a \cos \omega t$

When H = 1.5m,

$1.5 = 2.0 – 1.0 \cos (\dfrac{2 \pi}{12}t)$

$\cos (\dfrac{2 \pi}{12}t) = 0.5$

$t = 2.0 h$

Internal Resistance and Terminal Potential Difference

This applet demonstrates how terminal potential difference (as measured by the voltmeter across the terminals of the battery) changes depending on :

  1. internal resistance r
  2. external resistance R
  3. emf E
  4. when a switch is turned on and off
<iframe scrolling="no" title="Internal Resistance and Terminal Potential Difference" src="" width="640px" height="480px" style="border:0px;"> </iframe>

Sky-Diving and Terminal Velocity

This is a wonderful applet created by Abdul Latiff, another Physics teacher from Singapore, on how air resistance varies during a sky-dive with a parachute. It clearly demonstrates how two different values of terminal velocity can be achieved during the dive.

Incidentally, there is a video on Youtube that complements the applet very well. I have changed the default values of the terminal velocities to match those of the video below for consistency.

Also relevant is the following javascript simulation that I made in 2016 which can show the changes in displacement, velocity and acceleration throughout the drop.

Potential Divider with Thermistor Applet

The wonderful thing about GeoGebra is that you can whip up an applet from scratch within an hour just before your lesson and use it immediately to demonstrate a concept involving interdependent variables. I was motivated to do this after trying to explain a question to my IP4 students.

The RGB colours of the thermistor reflects the temperature (red being hot, bluish-purple being cold)

This was done to demonstrate the application of potential dividers involving a thermistor and a variable resistor. It can, of course, be modified very quickly to introduce other circuit components.