simulation

Charging by Induction Simulation

Open in new tab 🔗

In the topic of Static Electricity, charging by induction often presents a challenge for students. The process involves several invisible steps — the movement of electrons, the effect of grounding, and the lasting net charge after removing the influencing object. To bridge this gap between theory and understanding, I have created this interactive simulation to help students visualise the interactions and changes. Students can be asked to predict what will happen using various button sequences to help challenge students’ preconceptions about electric charge and behaviour during induction.

Charging by Induction Javascript Simulation

Refer to the scenario above. What will happen next if we:
a) Remove the earth wire before removing the rod, or
b) Remove the rod before removing the earth wire?

Analogue Meter Template

This GeoGebra applet (https://www.geogebra.org/m/watavkq8) can serve as a template for an analogue meter.

I added a check for the text input so that users have to key in the correct number of decimal places according to the precision of the instrument. For instance, a reading of 1 V should be recorded as 1.00 V and 1.5 V recorded as 1.50 V. Users need to read to half the smallest division, e.g. if the needle is between 2.4 and 2.5, they should input 2.45 V.

Geogebra Simulation of a Potentiometer

Some of the more challenging problems in the topic of electricity in the A-level syllabus are those involving a potentiometer. The solution involves the concept of potential divider and the setup can be used to measure emf or potential difference across a variety of circuits components. Basically, students need to understand the rule – that the potential difference across a device is simply a fraction of the circuit’s emf, and that fraction is equal to the resistance of the device over the total resistance of the circuit.

[latex]V_{device}=\frac{R_{device}}{R_{total}}*emf[/latex]

The intention of this Geogebra app is for students to practise working on their calculations, as well as to reinforce their understanding of the principle by which the potentiometer works.

GeoGebra link: https://www.geogebra.org/m/pzy3qua8

Simulation: Faraday’s Law of Induction

This simulation traces the flux linkage and corresponding emf generated by a rectangular coil rotating along an axis perpendicular to a uniform magnetic field. One is able to modify the angular frequency to see the effect on the frequency and peak emf generated.

Faraday’s law of electromagnetic induction

https://ejss.s3-ap-southeast-1.amazonaws.com/faradayslaw_Simulation.xhtml