IP4 11 Current Electricity

Simulation of electron drift speed versus temperature

Metal Lattice Simulation

3.0 V
20 °C
Mean drift speed: 0.0 mm/s
At low temperature, ions vibrate less, so collisions are fewer and drift speed (and current) is higher for 3.0 V.
Your browser does not support the HTML5 canvas tag.

This simulation demonstrates the principle that the resistance of a metal conductor increases with temperature. As temperature rises, the metal ions in the lattice vibrate more vigorously. This increased vibration causes charge carriers (electrons) to collide more frequently with the ions, hindering their movement. As a result, resistance increases and the current flowing through the conductor decreases for the same applied voltage.

At the A-Level, this simulation extends the understanding of current by examining it from a microscopic perspective in terms of mean drift velocity. Instead of viewing current simply as the rate of flow of charge, students learn that electrons in a conductor move slowly on average, with a small net drift in the direction of the electric field. The current depends on how many charge carriers are available and how fast they drift. This is expressed using the equation:

$$I = nAv_dq$$

where II is the current, nn is the number density of charge carriers, AA is the cross-sectional area of the conductor, vdv_dis the mean drift velocity of the electrons, and qq is the charge of each carrier. As temperature increases, more frequent collisions reduce the drift velocity, helping to explain why current decreases even though the charge carriers are still present—linking microscopic behaviour with macroscopic electrical measurements.

How to survive a lightning strike

This is an interesting question on electricity: in order to survive a lightning strike, which of the following costumes offer the best protection? A coat of armour, your birthday suit, a wetsuit or a superman costume? Watch this MinuteEarth video on Faraday’s cage to find out!

Squishy Circuits

image taken from http://courseweb.stthomas.edu/apthomas/SquishyCircuits/howTo.htm

I came across this Ted video on Squishy Circuits, presented by AnnMarie Thomas from the University of St Thomas and found it to be a suitable activity for kids. I shall attempt to make some when I am free with instructions from the following site:

http://courseweb.stthomas.edu/apthomas/SquishyCircuits/index.htm

Be sure to watch this page for photos and videos!

As I was contemplating the potential of combining conductive and insulating dough to make fun toys with the help of electric motors and the learning that can come from it. Apart from the obvious learning related to electrical resistance and current, we can even learn about flotation and fluid dynamics by building floating boats of different hull shapes.