simple harmonic motion

Simple Harmonic Motion perspectives

This is a common example used in the JC1 topics of Oscillations, where if one were to look at an object moving in circles from the side view, it will appear to move in simple harmonic motion. This simple 3D animation allows users to rotate the view to see exactly that. Right click and drag to rotate the view. If you are using a mobile device, use two fingers to drag.

To access the animation in full screen, visit https://www.geogebra.org/m/tsz95u6p

Docking with Tides

Did this simple interactive upon request by a colleague who is teaching the JC1 topic of Oscillations.

Based on the following question, this is used as a quick visual to demonstrate why there must be a minimum depth before the boat approaches harbour.

The rise and fall of water in a harbour is simple harmonic. The depth varies between 1.0 m at low tide and 3.0 m at high tide. The time between successive low tides is 12 hours. A boat, which requires a minimum depth of water of 1.5 m, approaches the harbour at low tide. How long will the boat have to wait before entering?

The equation of the depth of water H based on the amplitude of the tide a can be given by $H = H_o + a \cos \omega t$ where $H_o$ is the average depth of the water.

$H = H_o + a \cos \omega t$

When H = 1.5m,

$1.5 = 2.0 – 1.0 \cos (\dfrac{2 \pi}{12}t)$

$\cos (\dfrac{2 \pi}{12}t) = 0.5$

$t = 2.0 h$

Simple Harmonic Motion Graphs

Here’s my attempt at animating 5 graphs for simple harmonic motion together in one page.

From left column:

$$v = \pm\omega\sqrt{x_o^2-x^2}$$

$$a = -\omega^2x$$

From right column:

$$s = x_o\sin(\omega t)$$

$$v = x_o\omega \cos(\omega t)$$

$$a = -x_o\omega^2 \sin(\omega t)$$

And here is the animated gif file for powerpoint users:

Simple harmonic motion graphs - displacement-, velocity-, acceleration- time graphs and more