# Technology

## 3D Printed Tippe Top

After setting up my newest toy, the Creality Ender 3 V2 3D Printer, I started with a few simple prints from the Thingiverse website. The first Physics-related object created is for a colleague – a tippe top. This interesting mushroom-shaped toy is spun with the round top facing down. If it is spun fast enough, it will eventually spin upright, in the opposite orientation to where it started spinning. In doing so, it’s centre of mass even shifted upwards.

The source of the STL file is: https://www.thingiverse.com/thing:536377

The following video gives an explanation for why this happens.

## Sharing on Formative Assessment using SLS

This deck of slides was used today in my sharing session with some colleagues on the use of assessment features in SLS. Sharing it here for anyone who might be interested.

## Escape Velocity

Using the GeoGebra app above, I intend to demonstrate the relationship between total energy, kinetic energy and gravitational potential energy in a rocket trying to escape a planet’s gravitational field.

By changing the total energy of the rocket, you will increase the initial kinetic energy, thus allowing it to fly further from the surface of the planet. The furthest point to which the rocket can fly can be observed by moving the slider for “distance”. You will notice that the furthest point is where kinetic energy would have depleted.

Gravitational potential energy of an object is taken as zero at an infinite distance away from the source of the gravitational field. This means gravitational potential energy anywhere else takes on a negative value of $\dfrac{-GMm}{r}$. Therefore, the total energy of the object may be negative, even after taking into account its positive kinetic energy as total energy = kinetic energy + gravitational potential energy.

The minimum total energy needed for the rocket to leave the planet’s gravitational field is zero, as that will mean that the minimum initial kinetic energy will be equal to the increase in gravitational potential energy needed, according to the equation $\Delta U = 0 – (-\dfrac{GMm}{R_P})$, where $R_P$ is the radius of the planet.

Since $\dfrac{1}{2}mv^2 = \dfrac{GMm}{R_P}$, escape velocity, $v = \sqrt{\dfrac{2GM}{R_P}}$.

## Using Google Jamboard for Home-Based Learning

Further ideas for Home-based Learning. I’ve put a time bookmark from the point where it becomes relevant to Math and Science teachers, but you can always watch the video from the start.

## Template for self-assessment questions

Here is a template that I might use to generate questions for students’ self-assessment in future. Based on a query that one of the participants in a GeoGebra online tutorial asked about generating random questions for simple multiplication for lower primary students.

The online tutorial was conducted by some teachers in the Singapore MOE GeoGebra community to share how GeoGebra could be used to create resources for home-based learning.

## Teaching Python

An ex-colleague from HQ introduced me to Trinket: a useful web-based code editor that allows students to tinker with codes and showcase their work. Here’s an example of a BMI calculator that can be embedded via iframes.

As I am teaching programming to the lower sec IP students this term as part of their Skills and Knowledge curriculum, I was wondering if I should use this to ask my students to submit their work.