Uniform vertical circular motion

The following GeoGebra app simulates the force vectors on an object in uniform vertical circular motion.

A real world example of this would be the forces acting on a cabin in a ferris wheel.

<iframe scrolling="no" title="Vertical Uniform Circular Motion " src="" width="640px" height="480px" style="border:0px;"> </iframe>

Vertical Non-Uniform Circular Motion

This is a simulation that shows the vectors of forces acting on an object rolling in a vertical loop, assuming negligible friction.

To complete the loop, the initial velocity must be sufficiently high so that contact between the object and the track is maintained. When the contact force between the object and its looping track no longer exists, the object will drop from the loop.

The following code is for embedding in SLS.

<iframe scrolling="no" title="Vertical non-uniform circular motion" src="" width="640px" height="480px" style="border:0px;"> </iframe>

Hydrostatic Pressure and Upthrust

This app is used to demonstrate how a spherical object with a finite volume immersed in a fluid experiences an upthrust due to the differences in pressure around it.

Given that the centre of mass remains in the same position within the fluid, as the radius increases, the pressure due to the fluid above the object decreases while the pressure below increases. This is because hydrostatic pressure at a point is proportional to the height of the fluid above it.

It can also be used to show that when the volume becomes infinitesimal, the pressure acting in all directions is equal.

The following codes can be used to embed this into SLS.

<iframe scrolling="no" title="Hydrostatic Pressure and Upthrust" src="" width="640px" height="480px" style="border:0px;"> </iframe>

Geogebra Simulation of a Potentiometer

Some of the more challenging problems in the topic of electricity in the A-level syllabus are those involving a potentiometer. The solution involves the concept of potential divider and the setup can be used to measure emf or potential difference across a variety of circuits components. Basically, students need to understand the rule – that the potential difference across a device is simply a fraction of the circuit’s emf, and that fraction is equal to the resistance of the device over the total resistance of the circuit.


The intention of this Geogebra app is for students to practise working on their calculations, as well as to reinforce their understanding of the principle by which the potentiometer works.

GeoGebra link: